Community-wide distribution of predator-prey interaction strength in kelp forests.
نویسندگان
چکیده
The strength of interactions between predators and their prey (interaction strength) varies enormously among species within ecological communities. Understanding the community-wide distribution of interaction strengths is vital, given that communities dominated by weak interactions may be more stable and resistant to invasion. In the oceans, previous studies have reported log-normal distributions of per capita interaction strength. We estimated the distribution of predator-prey interaction strengths within a subtidal speciose herbivore community (45 species). Laboratory experiments were used to determine maximum per capita interaction strengths for eight species of herbivores (including amphipods, isopods, gastropods, and sea urchins) that graze on giant kelp (Macrocystis pyrifera) microscopic stages. We found that maximum per capita interaction strength saturated as a function of individual herbivore biomass, likely caused by predator/prey size thresholds. Incorporating this nonlinearity, we predicted maximum per capita interaction strength for the remaining herbivore species. The resulting distribution of per capita interaction strengths was bimodal, in striking contrast to previous reports from other communities. Although small herbivores often had per capita interaction strengths similar to larger herbivores, their tendency to have greater densities in the field increased their potential impact as grazers. These results indicate that previous conclusions about the distributions of interaction strength in natural communities are not general, and that intermediate-sized predators can under realistic circumstances represent the most effective consumers in natural communities.
منابع مشابه
Predator Responses, Prey Refuges, and Density-dependent Mortality of a Marine Fish
Detection of density dependence in animal populations is a primary goal of population ecology, and the processes causing density dependence play a major role in population regulation. Predation can strongly regulate populations by populational and behavioral responses of predators to their prey. Here I evaluate the existence and strength of density-dependent mortality in local populations of a ...
متن کاملDietary niche expansion of a kelp forest predator recovering from intense commercial exploitation.
Marine ecosystems are increasingly at risk from overexploitation and fisheries collapse. As managers implement recovery plans, shifts in species interactions may occur broadly with potential consequences for ecosystem structure and function. In kelp forests off San Nicolas Island, California, USA, we describe striking changes in size structure and life history traits (e.g., size at maturation a...
متن کاملPredator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour.
Although human-mediated extinctions disproportionately affect higher trophic levels, the ecosystem consequences of declining diversity are best known for plants and herbivores. We combined field surveys and experimental manipulations to examine the consequences of changing predator diversity for trophic cascades in kelp forests. In field surveys we found that predator diversity was negatively c...
متن کاملExploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.
Size-structured predator-prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside m...
متن کاملComplementarity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs.
Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 6 شماره
صفحات -
تاریخ انتشار 2002